# **Trismus Treatment Device**

ME 476C

Team Members:

Shilo Bailey, Nathan Bastidas, Cassina Olson, Carter Rhoades



## **Project Description**

### **The Trismus Treatment Team:**

Goals:

- -Create more affordable (>\$50) devices to open tighter jaws (>6mm) without causing pain.
- -Measure applied pressure and strain with only the 3D printed device

### Primary Sponsors:

- Dr. Rebecca Bartlett
- Carolyn Abraham from Dignity Health Phoenix

### Advisors/Collaborators:

- Dr. Timothy Becker
- Communication Sciences and Disorder (CSD) students

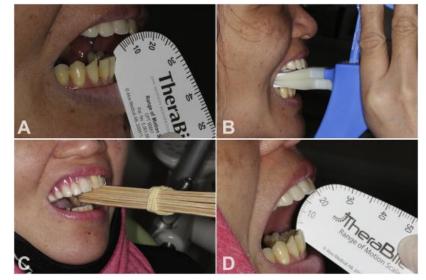



Fig. 1 - Science Direct V16 I1 doi.org

Cassina: 1

### **Black Box Model**

Inputs: - Mechanical Energy (Hand Motion)

 Compressive and Tension Force (Jaw Muscles) Function: Help Stretch Jaw Muscles passively and actively through different stretching exercises Outputs:

- Tension Stress (Jaw Muscle)
- Mechanical Energy (From Device)
  - Numerical Data (Muscle
     Displacement and
     Force Output)

Nathan: 2

### **Functional Decomposition**

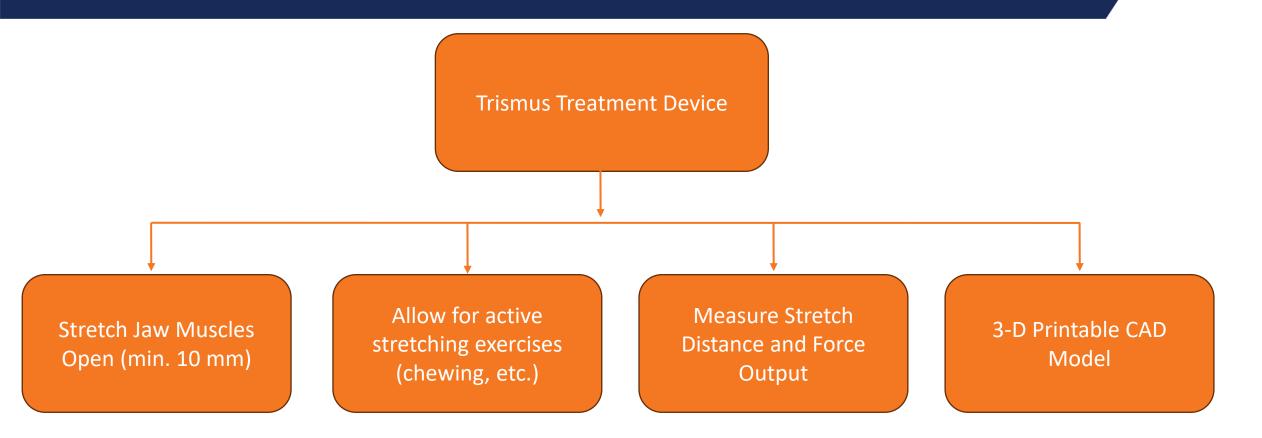
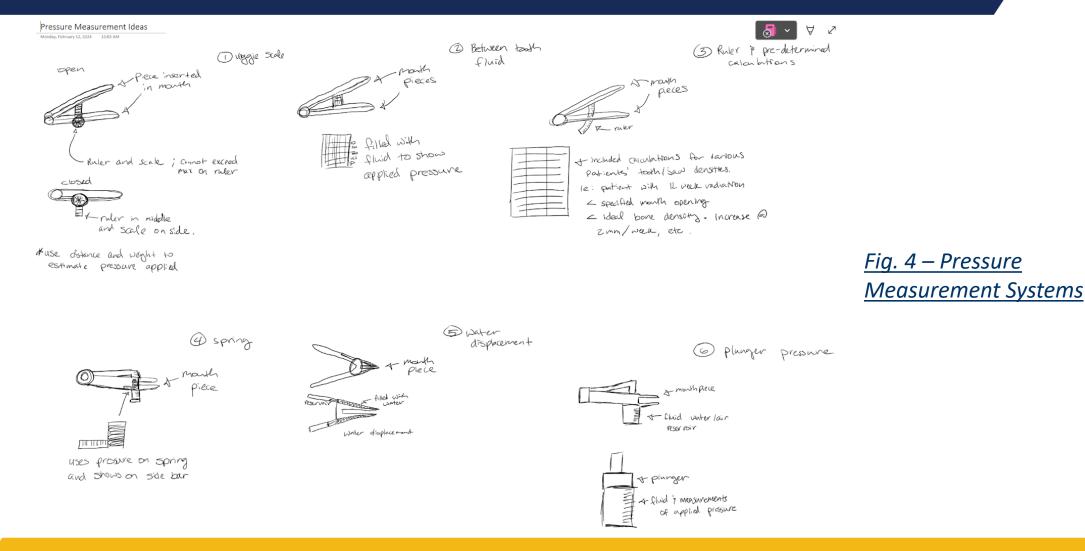
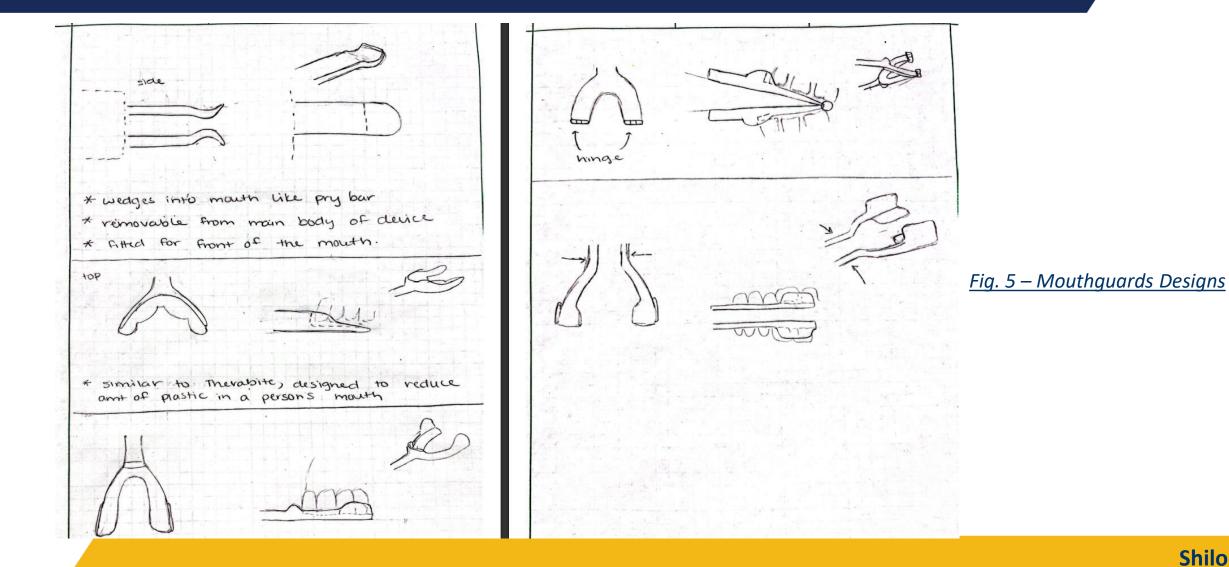
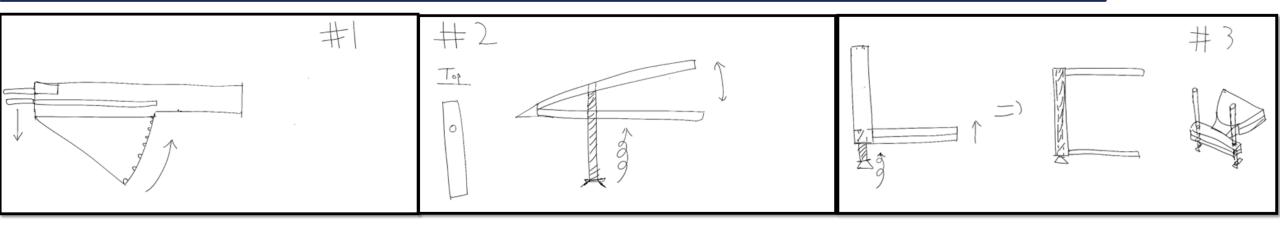






Fig. 3 – Functional Decomposition

Nathan: 3







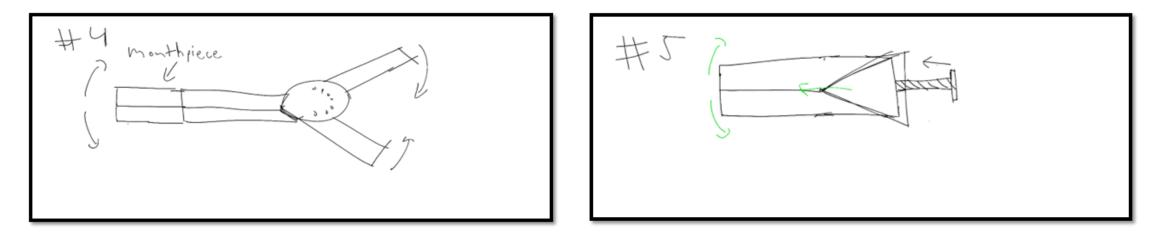



Fig. 6 – Mechanical Systems

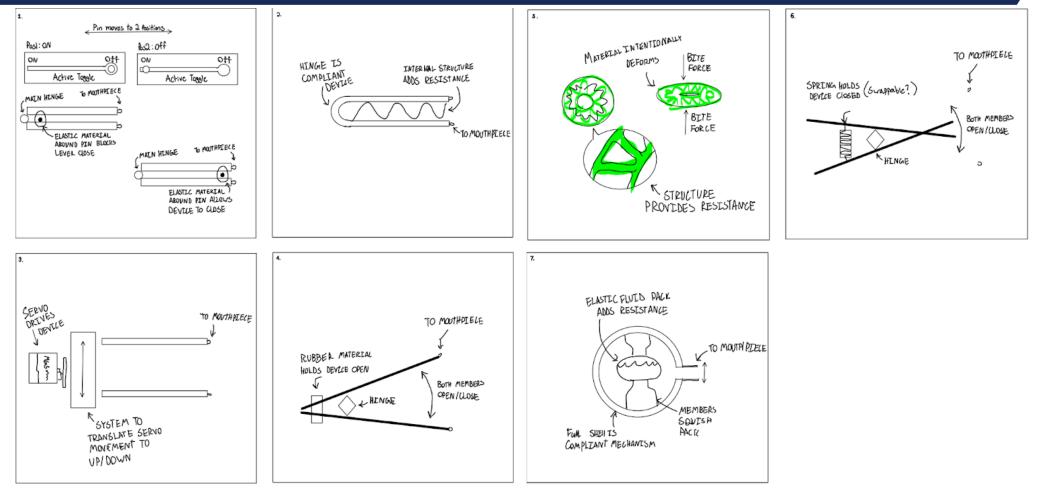



Fig. 7 – Active Resistance Systems

## **Alternative Designs**

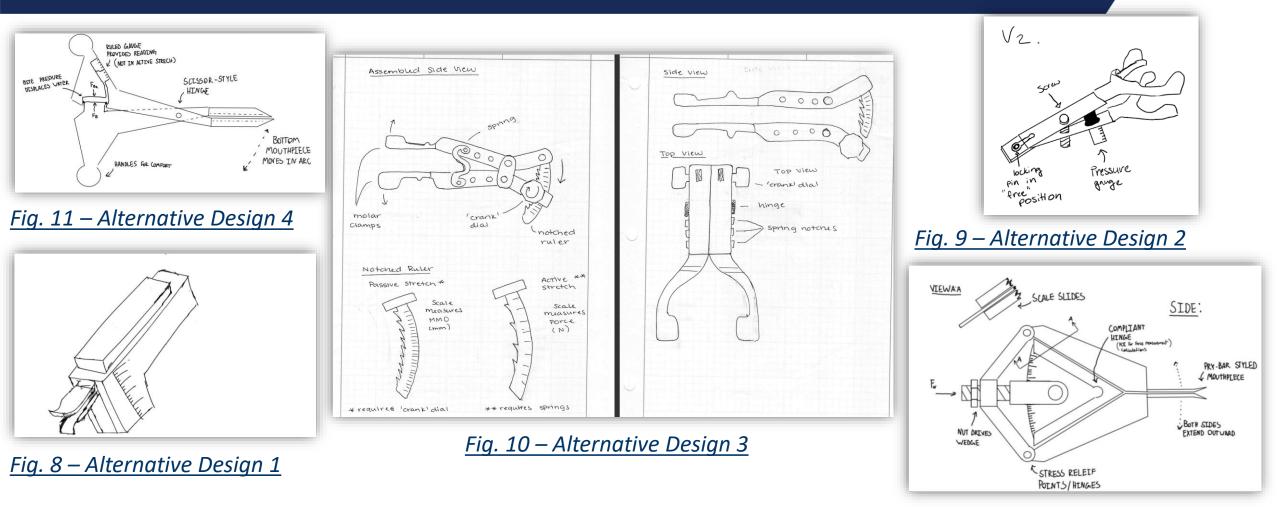
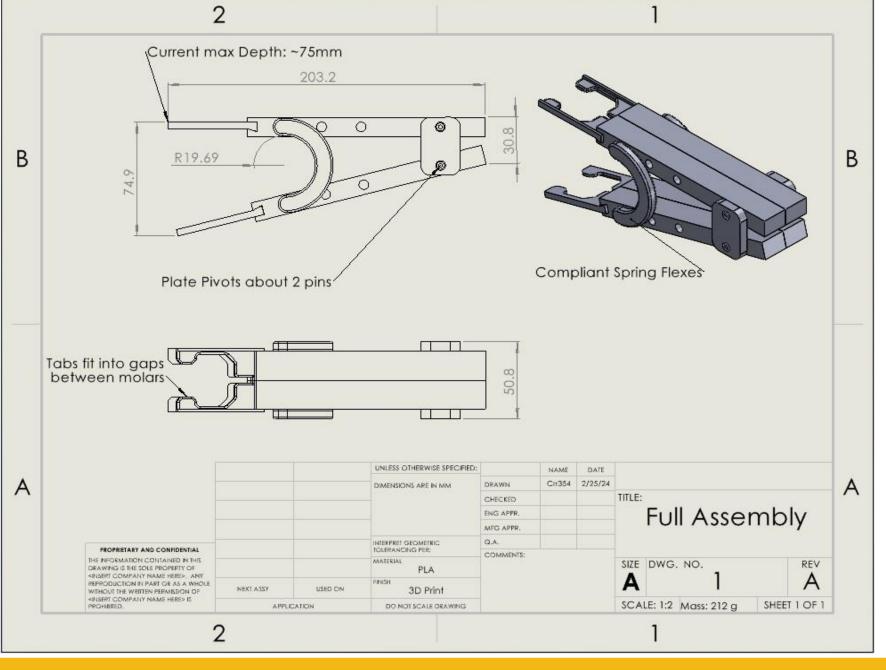



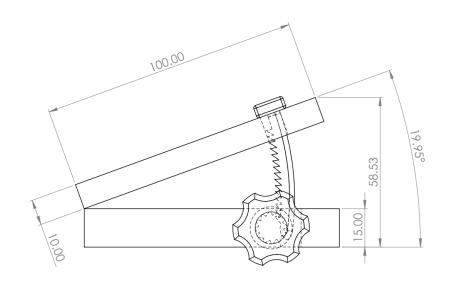

Fig. 12 – Alternative Design 5

Cassina: 8

### **CAD - Mechanical:**

- Max Depth: ~75mm
- Min Depth: ~5mm
- Compliant Spring Feature
- Plate connects both arms
- Mouthpiece Tabs Fit between gaps in back teeth




#### Fig. 13 – CAD Model Drawing

Carter: 9

### **CAD - Measurement:**

- Max Measured Depth: ~58mm
- Min Measured Depth: ~0mm
- Dial and Graded surface
- Graded surface calculates force

based on compliant spring



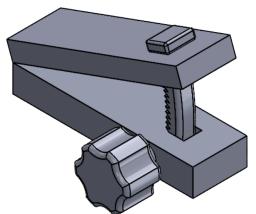
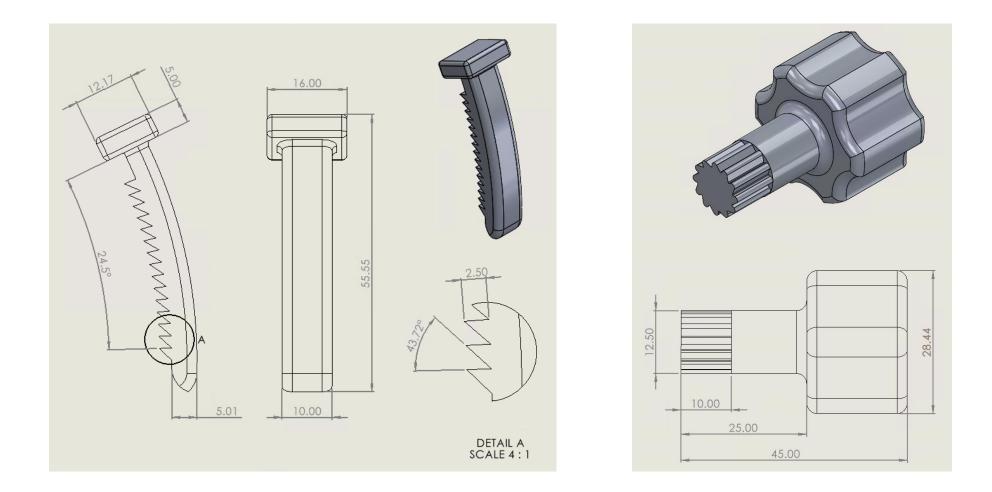
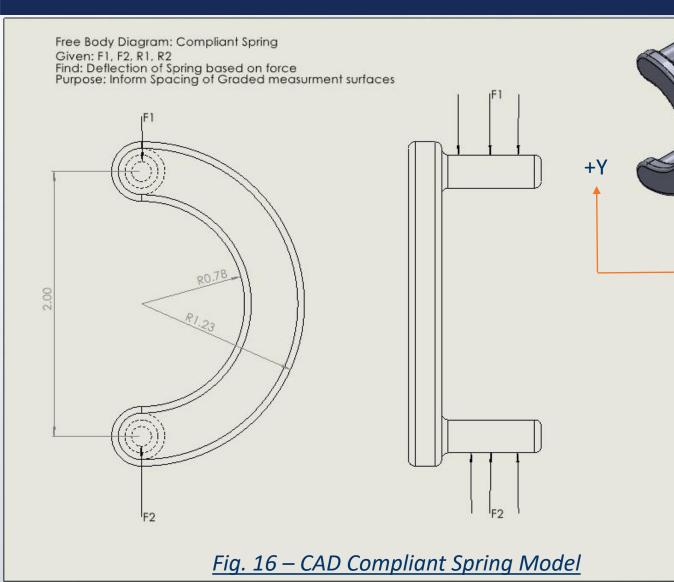




Fig. 14 – CAD Model: Dial-Measurement System






#### Fig. 15 – CAD Drawing: Dial-Measurement System

#### Shilo: 11

### **Engineering Calculations: Compliant Spring**

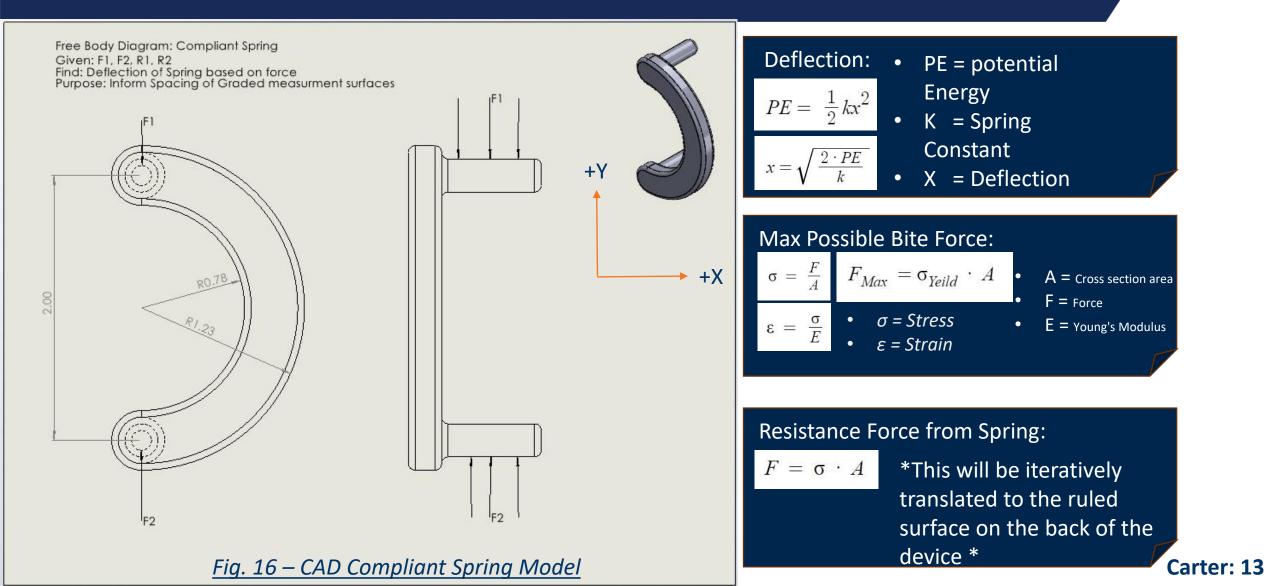


#### Goals:

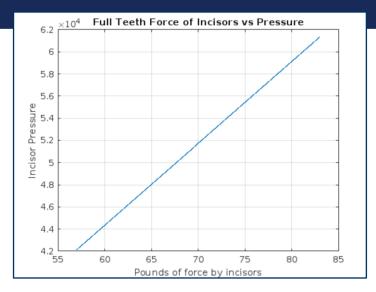
- Inform Spacing of Graded force measurement surfaces based on Bite forces
- Identify failure points

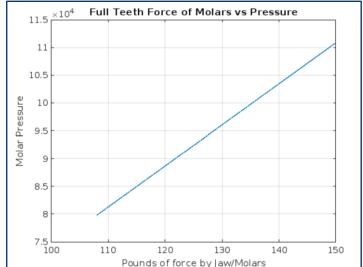
#### Knowns:

+X


- Fr and F2 are evenly distributed across connection pins
- Thickness of Spring

#### Find:


- Deflection of Spring in Y-Axis based on F1 and F2
- Min Connection Pin Diameter before shear failure
- Max Deflection overall Before
  Failure


#### Carter: 12

### **Results:** Spring Translation Preliminaries



### **Engineering Calculations: Applied Pressure**





#### % Collected Data

INC = 57:0.01:83; %pounds of force by incisors JM = 108:0.01:150; %pounds of force by jaw/molars STPetit = 175.55; %mm^2 mouth area for petite jaw STAV = 178.85; %mm^2 mouth area for average jaw STLRG = 182.75; %mm^2 mouth area for large jaw TT = 739; %mm^2 average full mouth tooth area Quadrant = 168; %mm^2 average one quadrant tooth area Onetooth = 24; %mm^2 average one tooth

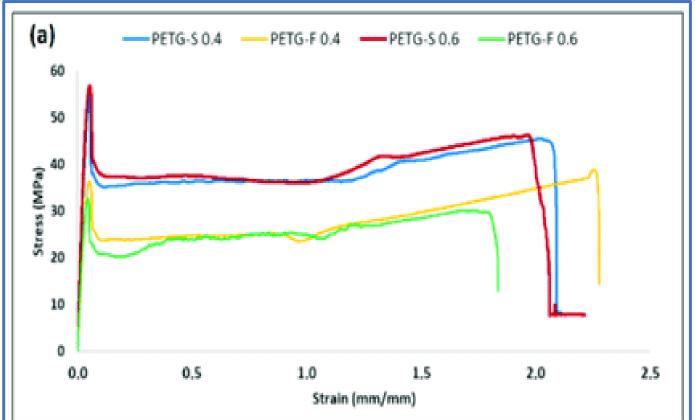
initial = input ("type 1 for full teeth, 2 for Half Teeth, 3 for one Quadrant Teeth, 4 for No teeth, or 5 for special area") if initial == 1 Incisor\_Pressure = INC\*TT; Molar\_Pressure = JM\*TT; disp ('Incisor Pressure') disp (Incisor\_Pressure) disp (Jaw/Molar Pressure') disp (Molar\_Pressure) disp ('average Incisor Pressure') x = mean(Incisor\_Pressure) disp ('average Molar Pressure') y = mean(Molar\_Pressure)

#### Goals:

- Use area of teeth/jaw with a range of forces to determine the optimal Pressure Applied.
- Enable full bite, half bite, quad bite, no bite, and special bite calculations.

#### Fig. 17 – Full Teeth Incisors and Molars v Pressure

### **Engineering Calculations: Material Tolerances**


- Material: PETG Plastic
- Mechanical Properties:
  - Chemical Resistance (FDA-Compliant)
  - Yield Strength: ~47.9 52.9 MPa
  - Tensile Strength: ~60-66 MPa
  - Density: ~1.26e3 1.28e3 kg/m<sup>3</sup>
  - Avg. Print Speed: 60-80 mm/s

### **3D Slicer: Ultimaker Cura**

Printer: Creality Ender 3 (V2)

#### Settings:

- Quality: Standard (0.2 mm)
- 0.4 mm Nozzle
- Generic PETG
- 20% Infill
- Shell Thickness: 1.6 mm x 0.8 mm



# Total Estimated Print Time = ~17 Hours/Assembly

Nathan: 15

## **Concept Evaluation: Decision Matrix**

### Background

| Criteria                        | Weight       | ht Current Solution :TheraBite   |                 | Alternate Design 1 |                      | Alternate Design 2 |                       | Alternate Design | Alternate Design 3              |                 | Alternate Design 4 |                 | Alternate Design 5 |  |
|---------------------------------|--------------|----------------------------------|-----------------|--------------------|----------------------|--------------------|-----------------------|------------------|---------------------------------|-----------------|--------------------|-----------------|--------------------|--|
|                                 |              | Rating (0-10)                    | Weighted Rating | Rating (0-10)      | Weighted Rating      | Rating (0-10)      | Weighted Rating       | Rating (0-10)    | Weighted Rating                 | Rating (0-10)   | Weighted Rating    | Rating (0-10)   | Weighted Rating    |  |
| Cost (Lower cost scores higher) | 30%          | 1                                | 0.3             | 7                  | 2.1                  | 6                  | 1.8                   | 7                | 2.1                             | 4               | 1.2                | 9               | 2.7                |  |
| Printability                    | 15%          | 0                                | 0               | 6                  | 0.9                  | 5                  | 0.75                  | 6                | 0.9                             | 5               | 0.75               | 8               | 1.2                |  |
| Print In Place                  | 5%           | 0                                | 0               | 8                  | 0.4                  | 3                  | 0.15                  | 2                | 0.1                             | 2               | 0.1                | 7               | 0.35               |  |
| Safe                            | 20%          | 5                                | 1               | 5                  | 1                    | 5                  | 1                     | 5                | 1                               | 5               | 1                  | 5               | 1                  |  |
| Open Source                     | 5%           | 0                                | 0               | 9                  | 0.45                 | 8                  | 0.4                   | 8                | 0.4                             | 5               | 0.25               | 9               | 0.45               |  |
| Adaptability                    | 10%          | 8                                | 0.8             | 6                  | 0.6                  | 7                  | 0.7                   | 8                | 0.8                             | 6               | 0.6                | 6               | 0.6                |  |
| Force Measurement?              | 15%          | 3                                | 0.45            | 7                  | 1.05                 | 6                  | 0.9                   | 8                | 1.2                             | 3               | 0.45               | 8               | 1.2                |  |
| Total Percenta                  | ge: 100%     | Total Option A:                  | 2.55            | Total Option B:    | 6.5                  | Total Option C:    | 5.7                   | Total Option I   | 6.5                             | Total Option E: | 4.35               | Total Option F: | 7.5                |  |
|                                 | Best Fit: Do | esign #5                         |                 |                    |                      |                    |                       |                  |                                 |                 |                    |                 |                    |  |
| Top 5 Combinations (More of     | n page 2)    |                                  |                 |                    |                      |                    |                       |                  |                                 | Note:           | Safety Ra          | ting rem        | ains               |  |
| System:                         |              | Pressure Measurement Mouth Piece |                 | e A                | Active Resistance Me |                    | echanical Drafter:    |                  | neutral until safety testing is |                 |                    |                 |                    |  |
| Alt Design 1                    |              | Ruled Measurements               |                 | PryBar             | PryBar RubberBa      |                    |                       |                  | AT                              | possible        |                    |                 |                    |  |
| Alt Design 2                    |              | Plunger Pressure                 |                 | MouthGuar          | MouthGuard To        |                    | TogglePin Sing        |                  | AS                              |                 |                    |                 |                    |  |
| Alt Design 3                    |              | Spring Force                     |                 | Molar-Anchored     |                      | Spring             | Spring Doul           |                  | -11                             |                 |                    |                 |                    |  |
| Alt Design 4                    |              | Water Displacement               |                 | MouthGuard FullCo  |                      | ullCompliant(#7)   | Compliant(#7) Scissor |                  | TR                              |                 |                    |                 |                    |  |
| Alt Design 5                    |              | Leverage Device                  |                 | PryBar             | PryBar TogglePin     |                    |                       | Wedge C          | Vedge CTR                       |                 |                    |                 |                    |  |

#### Table I – Decision Matrix

## **Concept Evaluation**

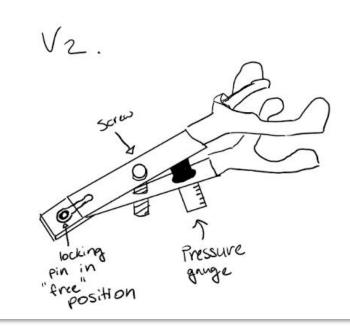
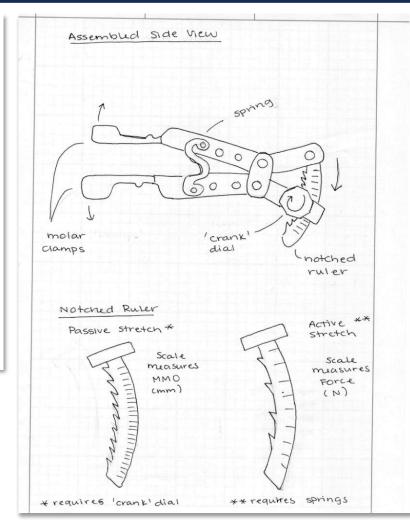




Fig. 9 – Alternative Design 2



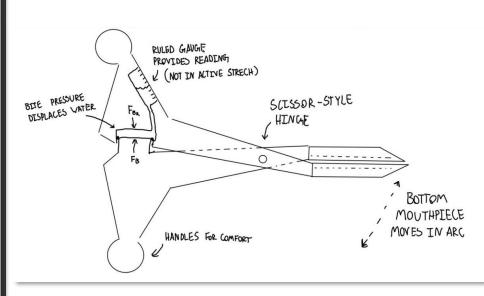



Fig. 11 – Alternative Design 4

Nathan: 17

<u>Fig. 10 – Alternative Design 3</u>

## Budget

#### Updates:

- Requested a budget of \$200 from the client
  - $\circ$  Approved
- Waiting to receive funds

### Fundraising:

- Team donations
  - o **\$100**

### <u>Next</u>:

• Purchase filament to begin 3D printing

| Budget<br>Components    | Туре                         | Cost     |
|-------------------------|------------------------------|----------|
| Anticipated             | Funds from CSD<br>Department | \$200    |
| Fundraising             | Team Donations               | \$100    |
| Anticipated<br>Expenses | Printer Filament (x2)        | (- \$50) |
| Total Spent             |                              | \$50     |
| Remaining               |                              | \$250    |

<u> Table II – Budget Table</u>

## **Running Schedule**

| Main Task:                                                | <u>Team Member(s)</u> : | Progress: | Target Completion Date: |  |  |  |
|-----------------------------------------------------------|-------------------------|-----------|-------------------------|--|--|--|
| Concept Generation                                        | Cassina                 | Complete  | 2/26/24                 |  |  |  |
| Functional Analysis                                       | Nathan                  | Complete  | 2/26/24                 |  |  |  |
| Engineering Calculations:<br>"Spring Translation prelims" | Carter                  | Complete  | 2/26/24                 |  |  |  |
| CAD Mechanical System                                     | Carter                  | Complete  | 2/26/24                 |  |  |  |
| CAD Measurement System                                    | Shilo                   | Complete  | 2/26/24                 |  |  |  |
| BOM                                                       | Nathan                  | Complete  | 2/26/24                 |  |  |  |
| Presentation 2                                            | All                     | Complete  | 2/26/24                 |  |  |  |
| Report #1                                                 | All                     | On Time   | 3/3/24                  |  |  |  |
| Website Update #1                                         | All                     | On Time   | 3/15/24                 |  |  |  |
| <u>Table III – Scheduling Table</u>                       |                         |           |                         |  |  |  |

Carter: 19

### **Tentative Bill of Materials**

Total Approximate Cost: \$8.58

| ltem                | Part<br>No. | Desc.                                                | Material Use<br>(cm^3) | Appx. Cost/Part<br>(\$.05/cm^3) | Qty. |
|---------------------|-------------|------------------------------------------------------|------------------------|---------------------------------|------|
| Top Arm             | 01          | Main body of device                                  | 33.920                 | \$1.70                          | 4    |
| Pry Bar             | 02          | Mouthpiece side #1                                   | 1.875                  | \$0.09                          | 2    |
| Pry Bar Mirror      | 03          | Mouthpiece side #2                                   | 1.875                  | \$0.09                          | 2    |
| Compliant Spring    | 04          | Provides active resistance to jaw articulation       | 7.518                  | \$0.38                          | 2    |
| Connector           | 05          | 3D printed dowel to connect all parts                | 1.019                  | \$0.05                          | 2    |
| Connection<br>Plate | 06          | 3D printed plate to act as a joint for device motion | 5.523                  | \$0.28                          | 2    |

Table IV – Current Bill of Materials

Nathan: 20

# Thank you!

# **Questions?**



### **References:**

- [1] Nina Pauli, Ulrika Svensson, Therese Karlsson & Caterina Finizia (2016) "Exercise intervention for the treatment of trismus in head and neck cancer a prospective two-year follow-up study," Acta Oncologica, 55:6, 686-692, DOI: <u>10.3109/0284186X.2015.1133928</u>
- [2] Charters E, Dunn M, Cheng K, Aung V, Mukherjee P, Froggatt C, Dusseldorp JR, Clark JR, "Trismus therapy devices: A systematic review," Oral Oncology, Volume 126, 2022, 105728, ISSN 1368-8375, <u>https://doi.org/10.1016/j.oraloncology.2022.105728</u>. Accessed February 3, 2024
- [3] Daniel Buchbinder, Robert B. Currivan, Andrew J. Kaplan, Mark L. Urken, "Mobilization regimens for the prevention of jaw hypomobility in the radiated patient: A comparison of three techniques," Journal of Oral and Maxillofacial Surgery, Volume 51, Issue 8, 1993, Pages 863-867, ISSN 0278-2391, <a href="https://doi.org/10.1016/S0278-2391(10)80104-1">https://doi.org/10.1016/S0278-2391(10)80104-1</a>.
- [4] Emma Charters, Jamie Loy, Raymond Wu, Kai Cheng, Masako Dunn, Sarah Davies, Jonathan Clark, "Feasibility study of intensive intervention using novel trismus device during adjuvant radiation for head and neck cancer: RestorabiteTM," Oral Oncology, Volume 146, 2023, 106558, ISSN 1368-8375, <u>https://doi.org/10.1016/j.oraloncology.2023.106558</u>.
- [5] W. R. Wagner and B. D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine. San Diego, CA: Academic Press, 2020.
- [6] J. B. Park and R. S. Lakes, Biomaterials: An Introduction. New York, NY: Springer, 2010.
- [7] D. Dharavath and R. Maddi, "ISO standards of Medical Devices," World Journal of Current Medical and Pharmaceutical Research, https://wjcmpr.com/index.php/journal/article/view/213 (accessed Feb. 4, 2024).
- [8] M. Jeong et al., "Materials and applications of 3D printing technology in Dentistry: An overview," MDPI, https://www.mdpi.com/2304-6767/12/1/1 (accessed Feb. 4, 2024).
- [9] M. Guvendiren, J. Molde, R. Soares, and J. Kohn, "Designing biomaterials for 3D printing ACS Publications," ACS Publications, <u>https://pubs.acs.org/doi/abs/10.1021/ACSBIOMATERIALS.6B00121</u> (accessed Feb. 5, 2024).
- [10] "Biocompatible 3D resins for medical devices," 3Dresyns, https://www.3dresyns.com/pages/bio-compatible-3dresyns (accessed Feb. 4, 2024).
- [11] "Siraya Tech Blu-tough resin," Siraya Tech, https://siraya.tech/products/blu-tough-resin-by-siraya (accessed Feb. 4, 2024).
- [12] J. P. Davim, *The design and manufacture of medical devices*. Ch 1. Cambridge: Woodhead Publishing Ltd, 2012.
- [13] D. van Gijn, et al. 'Ch.2: The mandible', Oxford Handbook of Head and Neck Anatomy, Oxford Medical Handbook e-pub, Jan. 2022.
- [14] Y. Ihara et al., "The Device of Ethylene Vinyl Acetate Sheet for Trismus Caused by Bilateral Mandible Fractures," Case Reports in Dentistry, vol. 2021, pp. 1–6, Aug. 2021, doi: https://doi.org/10.1155/2021/8340485.
- [15] Center for Devices and Radiological Health, "Classify Your Medical Device," U.S. Food and Drug Administration, Jul. 02, 2020. <u>https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device</u>
- [16] P. U. Dijkstra, W. W. I. Kalk, and J. L. N. Roodenburg, "Trismus in head and neck oncology: a systematic review," Oral Oncology, vol. 40, no. 9, pp. 879–889, Oct. 2004, doi: <u>https://doi.org/10.1016/j.oraloncology.2004.04.003</u>.
  This paper shows the effects of radiation on certain muscle groups and joints in the mandibular area.
- [17] M. Louise Kent et al., "Radiation-Induced trismus in head and neck cancer patients," Supportive Care in Cancer, vol. 16, no. 3, pp. 305–309, Oct. 2007, doi: https://doi.org/10.1007/s00520-007-0345-5.
- [18] C.-J. Wang, E.-Y. Huang, H.-C. Hsu, H.-C. Chen, F.-M. Fang, and C.-Y. Hsiung, "The Degree and Time-Course Assessment of Radiation-Induced Trismus Occurring After Radiotherapy for Nasopharyngeal Cancer," The Laryngoscope, vol. 115, no. 8, pp. 1458–1460, Aug. 2005, doi: <u>https://doi.org/10.1097/01.mlg.0000171019.80351.46</u>.
- [19] O. Isman, "Evaluation of jaw bone density and morphology in bruxers using panoramic radiography," Journal of Dental Sciences, Oct. 2020, doi: https://doi.org/10.1016/j.jds.2020.09.008.
- [20] J. Lee and A. Huang, "Fatigue Analysis of FDM Materials," *Rapid Prototyping Journal*, vol. 19, no. 4, pp. 291–299, Jun. 2013. doi:10.1108/13552541311323290
- [21] C. Guttridge, A. Shannon, A. O'Sullivan, K. J. O'Sullivan, and L. W. O'Sullivan, "Biocompatible 3D printing resins for medical applications: A review of marketed intended use, biocompatibility certification, and post-processing guidance," *Annals of 3D Printed Medicine*, vol. 5, p. 100044, Mar. 2022. doi:10.1016/j.stlm.2021.100044
- [22] L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, and J. Torok, "Special materials used in FDM Rapid Prototyping Technology Application," 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), Jun. 2012. doi:10.1109/ines.2012.6249805